Methane and microbial dynamics in the Gulf of Mexico water column
نویسندگان
چکیده
In contrast to other oligotrophic water bodies the Gulf of Mexico (GOM) hosts an abundance of hydrocarbon seeps, which likely influences the microbial assemblages it hosts particularly regarding the availability of labile carbon in the aphotic GOM. The aphotic zone receives direct injection of seep methane (CH4), but CH4 from an unknown source has been reported at supersaturated concentrations relative to the atmosphere in the GOM photic zone. Here we used iTag sequencing of 16S rRNA genes to characterize GOM microbial communities and to relate changes in microbial community structure to the properties inherent to their oceanic province-seafloor to the photic zone, seep and non-seep. Along this trajectory water column communities were distinct in the euphotic zone compared to the mesopelagic and deep-sea. In the euphotic zone the relative abundance of a cyanobacterial species (Prochlorococcus) was significantly correlated with both CH4 and chlorophyll a concentrations and was abundant in some deep-chlorophyll maximum (DCM) samples. The relative abundance of microorganisms related to known hydrocarbon degraders were also significantly correlated with CH4 in the euphotic zone, but no canonical methanotrophs were observed. In the mesopelagic to the seafloor canonical methanotrophs were identified, but only a Marine Group II Euryarchaeota was significantly correlated with CH4. Overall, depth and the associated environmental conditions were the primary drivers in structuring microbial communities over the GOM water column. Further, CH4 concentrations and relative microbial abundances covaried significantly from the seafloor to the photic zone in the GOM. The lack of a significant relationship between canonical methanotrophs and CH4 in the aphotic zone, even when sampling at seep sites, may suggest methane-oxidation by unknown microorganisms. Similarly their absence in the CH4 maximum and DCM suggested that CH4 is either oxidized by unrecognized methanotrophs or escapes the CH4 biofilter and fluxes to the atmosphere.
منابع مشابه
Bacteria and Archaea physically associated with Gulf of Mexico gas hydrates.
Although there is significant interest in the potential interactions of microbes with gas hydrate, no direct physical association between them has been demonstrated. We examined several intact samples of naturally occurring gas hydrate from the Gulf of Mexico for evidence of microbes. All samples were collected from anaerobic hemipelagic mud within the gas hydrate stability zone, at water depth...
متن کاملOn the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.
The anaerobic oxidation of methane (AOM) in the marine subsurface is a significant sink for methane in the environment, yet our understanding of its regulation and dynamics is still incomplete. Relatively few groups of microorganisms consume methane in subsurface environments--namely the anaerobic methanotrophic archaea (ANME clades 1, 2 and 3), which are phylogenetically related to methanogeni...
متن کاملMethane Flux and Authigenic Carbonate in Shallow Sediments Overlying Methane Hydrate Bearing Strata in Alaminos Canyon, Gulf of Mexico
In June 2007 sediment cores were collected in Alaminos Canyon, Gulf of Mexico across a series of seismic data profiles indicating rapid transitions between the presence of methane hydrates and vertical gas flux. Vertical profiles of dissolved sulfate, chloride, calcium, magnesium, and dissolved inorganic carbon (DIC) concentrations in porewaters, headspace methane, and solid phase carbonate con...
متن کاملA persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico.
Methane was the most abundant hydrocarbon released during the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. Beyond relevancy to this anthropogenic event, this methane release simulates a rapid and relatively short-term natural release from hydrates into deep water. Based on methane and oxygen distributions measured at 207 stations throughout the affected region, we find that within ~1...
متن کاملMicrobial Response to the MC-252 Oil and Corexit 9500 in the Gulf of Mexico
The Deepwater Horizon spill released over 4.1 million barrels of crude oil into the Gulf of Mexico. In an effort to mitigate large oil slicks, the dispersant Corexit 9500 was sprayed onto surface slicks and injected directly at the wellhead at water depth of 1,500 m. Several research groups were involved in investigating the fate of the MC-252 oil using newly advanced molecular tools to elucida...
متن کامل